第179章 规划未来科研方向(1/2)

研究生第二学年的日子过得飞快,林荞跟着周教授参与国家重点项目,从最初攻克晶粒粗大的难题,到后来优化高温合金的抗氧化和抗疲劳性能,一步步深入航空航天材料的核心领域。随着实验数据越积越多,对行业现状的了解越来越深,她心里渐渐有了一个清晰的方向——这辈子就扎根高温合金国产化,把国外卡脖子的技术难题一个个攻克下来,让咱们国家的飞机、火箭,都用上自己研发的材料。

这个想法不是突然冒出来的,而是在一次次实验、一次次对接企业需求、一次次查阅行业报告中慢慢沉淀下来的。之前和航空航天企业的工程师沟通时,对方无意中说的一句话,一直记在林荞心里:“现在咱们的发动机核心部件,进口材料不仅贵得离谱,还经常被限制供货周期,有时候想赶项目进度都难,要是能有国产化的替代材料,我们心里就踏实了。”

当时林荞正在做高温合金的疲劳性能测试,看着实验机上那些标注着“进口”字样的对比样品,心里就像压了块石头。后来她查了不少行业资料,发现我国高端高温合金的国产化率确实很低,尤其是航空发动机用的涡轮叶片材料,大部分依赖从国外进口,不仅成本高,还面临着技术封锁的风险。这让她想起了自己研发土壤肥力检测仪时,村民们因为没有好用的国产设备,只能凭经验施肥的困境——本质上都是“受制于人”,而科研工作者能做的,就是用技术打破这种被动局面。

“周教授,我想好了,以后就专门做高温合金国产化的研究。”这天下午,林荞拿着一份整理好的行业分析报告,走进了周教授的办公室,“现在咱们国家航空航天事业发展这么快,但核心材料跟不上,太影响进度了。我想把这个作为长期方向,不管是研究生阶段,还是以后读博、工作,都深耕这个领域。”

周教授放下手里的茶杯,接过报告仔细翻看,脸上露出了欣慰的笑容:“你能有这个想法,我特别高兴。做科研最怕没有明确的方向,你现在找准了,还和国家需求紧密结合,这就走对了路。”他指着报告上的数据,“你看,这几年我国航空航天领域对高温合金的需求量每年都在增长,但国产化率一直徘徊在30%左右,缺口很大。而且国外对我们的技术封锁越来越严,很多先进的生产工艺和配方都不对外公开,我们只能自己摸索。”

周教授顿了顿,继续说:“高温合金国产化不是一件容易的事,涉及到成分设计、熔炼工艺、热处理技术、性能检测等多个环节,每个环节都有难题要攻克。比如你现在研究的稀土-铌复合改性,只是成分设计里的一个小方向,后面还有规模化生产时的成分均匀性控制、极端环境下的性能稳定性等很多问题要解决。”

“我知道不容易,但越难越要做。”林荞眼神坚定,“之前做耐磨合金和土壤肥力检测仪,也遇到过很多困难,最后都解决了。我相信只要一步一个脚印,慢慢积累,总能做出成绩。”

从那天起,林荞就把“高温合金国产化”作为了自己的核心科研方向。为了实现这个目标,她做的第一件事就是恶补国际前沿知识,生怕自己的研究落后于人。

以前她查阅文献,主要关注国内的核心期刊和相关课题,现在则把大量时间花在阅读国际顶刊上。每天早上,她都会提前一个小时到实验室,打开电脑浏览《scripta materialia》《metallurgical and materials transactions a》等国际知名期刊的最新论文,了解国外科研团队的研究动态。遇到看不懂的专业术语,她就查词典、问导师;遇到复杂的实验方法,她就仔细梳理步骤,对比自己的实验方案,寻找可借鉴的地方。

“学姐,你每天都看这么多外文文献,不累吗?”本科生王浩看到林荞桌上厚厚的文献打印稿,上面画满了横线和批注,忍不住问道。

“累肯定累,但没办法啊。”林荞笑着说,“国外在高温合金领域研究得比我们早,有很多先进的思路和方法值得我们学习。我们要想追上甚至超过他们,首先得知道他们现在在做什么、做到了什么程度。”她拿起一份文献,“你看这篇论文,他们用了一种新的熔炼工艺,能减少合金中的杂质含量,提升高温稳定性,我们下次实验可以试试借鉴这个思路。”

除了阅读文献,林荞还主动关注国际学术会议的动态。只要有相关的线上会议,她都会挤出时间参加,认真听国外专家的报告,记录下关键的研究进展和技术突破。有一次,她参加一个国际高温合金研讨会,听到一位国外专家介绍“纳米颗粒增强高温合金”的研究,觉得这个方向很有前景,会后立刻通过邮件联系对方,请教相关的技术问题。虽然对方回复得比较简略,但也给了她不少启发。

“国外的研究更注重基础理论和前沿技术的结合,他们在原子层面的机理研究做得很深入。”林荞在自己的科研笔记上写道,“我们的优势是贴近实际需求,能快速将实验室成果转化为应用,但在基础理论研究上还有差距,需要加强。”

为了弥补这个差距,林荞主动向周教授申请,参与了一个关于“高温合金微观结构演变机理”的基础研究课题。这个课题不直接对接产业化应用,主要是通过分子动力学模拟和透射电镜观察,研究高温合金在长期高温环境下的微观结构变化规律。一开始,林荞对分子动力学模拟并不熟悉,操作软件时经常遇到问题,有时候一个简单的模拟参数调整,就要花上大半天时间。

“模拟结果怎么和实验观察到的不一致?”有一次,林荞对着电脑屏幕上的模拟曲线,皱起了眉头。她模拟的是稀土原子在高温下的扩散路径,但实验中通过透射电镜观察到的结果却和模拟不符。为了找到问题所在,她连续几天泡在计算中心,反复调整模拟参数,查阅相关的理论书籍,还请教了学校计算材料学专业的教授。

最后发现,是她在模拟时忽略了合金中其他元素对稀土原子扩散的影响。找到问题后,她重新调整了模拟模型,加入了镍、铬、铌等元素的相互作用参数,终于让模拟结果和实验数据吻合。“基础研究虽然见效慢,但能为后续的应用研究提供理论支撑,少走很多弯路。”林荞深有感触地说。

在关注国际前沿的同时,林荞也没有脱离国内的实际需求。她经常和合作的航空航天企业保持沟通,了解他们在实际生产中遇到的问题。有一次,企业的技术工程师反映,进口的高温合金零件在焊接过程中容易出现裂纹,影响产品质量。林荞立刻把这个问题记下来,作为后续的研究方向之一。

“焊接裂纹的产生,可能和合金的成分均匀性、晶粒尺寸,还有焊接工艺有关。”林荞在课题组会议上提出了自己的想法,“我们可以在现有合金配方的基础上,调整稀土和铌的添加比例,优化热处理工艺,提升合金的焊接性能。”

本章未完,点击下一页继续阅读。