第135章 第一次团队讨论(1/2)
初夏的科研楼会议室里,阳光透过百叶窗洒下斑驳光影,长条会议桌旁坐满了人。周教授坐在主位,左手边是材料学院的两位资深教授——研究高温合金多年的张教授、专注于金属表面工程的刘教授,右手边是三位博学长和李薇,林荞坐在靠近门口的位置,面前摊着厚厚的笔记和画满标注的文献,心里既有些紧张又充满期待。这是“高温抗氧化金属材料”课题的第一次正式团队讨论,核心是确定研究方向和初步实验方案。
“今天把大家召集过来,就是想听听各位的想法,为这个新课题定个调子。”周教授开门见山,语气沉稳,“航空发动机关键部件的高温氧化问题,是行业痛点,咱们的目标是研发出自主可控的材料,打破进口依赖。之前已经让大家做了些文献调研,现在谁先来说说自己的思路?”
会议室里短暂沉默了几秒,博一的学长陈明率先发言:“我查阅了国内外的相关研究,目前主流的高温抗氧化材料主要是镍基高温合金,通过添加铬、铝、钇等元素提升性能。我觉得咱们可以在现有镍基合金的基础上,优化元素配比,重点提升氧化膜的稳定性。”
“这个思路可行,但不够创新。”张教授微微摇头,“现有镍基合金的优化空间已经比较小了,要想实现突破,得找个新的切入点。”
另一位博学长王浩接着说:“我关注到陶瓷基复合材料,抗氧化性能很好,但脆性太大,高温强度不足,很难应用在发动机旋转部件上。或许可以尝试金属基复合材料,结合金属的韧性和陶瓷的抗氧化性?”
刘教授点点头:“这个方向有潜力,但金属和陶瓷的界面结合问题很难解决,容易出现剥离,后续实验难度不小。”
大家你一言我一语,讨论热烈却始终没有形成统一的方向。林荞捏了捏手里的笔,深吸一口气,鼓起勇气说道:“周教授,各位老师、学长,我有个想法想跟大家分享。”
所有人的目光都集中到她身上,林荞稍微平复了一下心情,缓缓说道:“我在查阅文献时发现,很多高温金属材料的失效,都是因为表面氧化膜不致密、易剥落,导致基体持续氧化。既然如此,我们能不能主动在金属材料表面形成一层稳定的抗氧化涂层?”
她翻开笔记,指着上面的示意图:“我想以镍为基体,通过合金化的方式,在材料中加入适量的铝和铬。这两种元素与氧的亲和力很强,在高温环境下,会优先扩散到材料表面,形成一层al?o?和cr?o?复合氧化膜。这层膜结构致密,能有效阻挡氧气和燃气与基体接触,从而达到抗氧化的目的。”
“而且,铝和铬的添加还能提升材料的高温强度。”林荞补充道,“我查了热力学数据,al?o?的生成吉布斯自由能很低,在1200c高温下依然能稳定存在;cr?o?的耐磨性和附着力很好,两者结合,既能保证抗氧化性,又能增强涂层与基体的结合力,避免剥落。”
她的话音刚落,会议室里就响起了低声的讨论。张教授眼前一亮,身体微微前倾:“这个思路很有意思!主动形成复合氧化膜,比单纯优化合金配比更有针对性。你有没有具体的元素添加比例?”
“目前还没有确定具体比例,但我做了些初步测算。”林荞说道,“铝的添加量大概在8%-12%,铬的添加量在10%-15%比较合适。添加量太少,形成的氧化膜不连续;太多则会影响材料的韧性和加工性能。”
刘教授皱了皱眉:“铝和铬的扩散速度不同,怎么保证它们能同时在表面形成均匀的复合氧化膜?而且,高温下氧化膜会不会因为热膨胀系数与基体不匹配而开裂?”
这正是林荞思考过的问题,她立刻回应:“我查过资料,钇、铈等稀土元素能细化晶粒,促进铝和铬的均匀扩散,还能改善氧化膜的附着力。我们可以适量添加0.2%-0.5%的稀土元素,解决扩散不均和膜基结合的问题。至于热膨胀系数的问题,我们可以通过调整基体成分,尽量缩小氧化膜与基体的热膨胀系数差异,减少高温下的内应力。”
“这个补充很关键。”周教授点点头,“稀土元素的协同作用,在之前的耐磨合金课题中已经得到了验证,用在这里应该可行。”
本章未完,点击下一页继续阅读。