数据给AI“供能”的背后,还有这些关键问题(2/2)

还有“数据授权”——平台要收集你的数据,得先告诉你“要收集什么数据”“用来做什么”,你同意了才能收集。比如你第一次用某app,会弹出一个“隐私协议”,里面写着“我们会收集你的位置信息,用于为你推荐附近的服务”,你点了“同意”,平台才能收集你的位置数据;要是你不同意,平台就不能收集。这就像别人要借你的东西,得先问你同不同意,不能随便拿。

要是不遵守这些规矩,随便用隐私数据,是会出大问题的。比如之前有个app,没经过用户同意,就偷偷收集用户的手机通讯录、通话记录,还用这些数据训练ai,给用户推荐“可能认识的人”。后来被监管部门查到,不仅罚了款,还要求整改,用户也纷纷卸载了app。

现在国家也出台了很多法律法规,比如《个人信息保护法》,就是专门管数据隐私的,要求企业“合法、正当、必要”地收集和使用数据,不能侵犯个人隐私。所以,ai用数据不仅要“够多、够干净”,还得“够合规”,保护好每个人的隐私,这样才能让人放心。

四、未来的“数据难题”:ai越来越能吃,“粮食”不够怎么办?

现在ai发展得越来越快,尤其是大模型,对数据的需求也越来越大——以前的ai可能需要几百万、几千万条数据,现在的大模型需要几十亿、几百亿,甚至万亿条数据。就像一个小孩慢慢长成了大胃王,以前吃一碗饭就够,现在得吃三碗,可“粮食”的增长速度,可能跟不上ai的“饭量”增长速度,未来可能会遇到“数据不够用”的难题。

一方面,“高质量的数据”越来越难找。比如要训练一个能解决复杂科学问题的ai,需要大量顶尖的学术论文、实验数据,可这类数据本来就少,而且很多还不公开,开发者很难拿到。就像要做一道高级菜,需要稀有的食材,可市场上根本买不到,再厉害的厨师也没法做。

另一方面,“数据重复利用”的问题也很突出。现在很多数据已经被反复用来训练不同的ai了,比如imag数据集,几乎所有做图像识别的ai都用过。就像一碗饭,被反复加热了很多次,营养早就流失了,再吃也没什么用;数据被反复用,ai能学到的新东西也越来越少,很难再进步。

为了解决这些问题,行业里也在想办法。比如研究“小样本学习”——让ai只需要少量数据就能学会任务,就像有的人悟性高,看别人做一遍就会做饭,不用反复练习。现在已经有一些ai能做到“用100张图片学会认猫”,而不是以前的几万张。还有“数据合成”——用ai自己生成数据,比如让ai生成很多张不同样子的猫的图片,用来训练其他ai。就像用面粉自己做“人造米”,虽然不是真米,但也能做饭。

另外,“数据共享”也是一个方向。比如不同的医院可以把医疗数据整合起来,匿名化之后共享给ai开发者,用来训练医疗ai,这样既能解决数据少的问题,又能让ai更好地帮助医生看病。不过数据共享也得解决隐私和安全的问题,不能随便共享。

总之,未来ai的“粮食”需求会越来越大,“找米”的难度也会越来越高,但只要不断想办法,比如搞小样本学习、数据合成、合规共享,总能找到解决办法,让ai有足够的“粮食”继续成长。

五、总结:ai和数据的关系,不止“有饭吃”这么简单

咱们聊到这儿,就把ai和数据的关系讲得更透彻了——数据不只是ai的“粮食”,要让ai好好“吃饭”,还得解决“粮食从哪儿来”“粮食干不干净”“能不能放心吃”“未来够不够吃”这些问题。

从收集数据,到清洗数据,再到合规使用数据,每一步都很关键,少了哪一步,ai都没法正常工作,甚至会出问题。就像咱们经营一家餐厅,不仅要找到稳定的食材供应商,还要保证食材新鲜、干净,更要遵守食品安全规定,这样才能做出好吃又安全的菜,让顾客满意。

现在ai已经走进了咱们生活的方方面面,从刷视频、点外卖,到看病、开车,都离不开数据的支撑。未来,随着ai越来越先进,数据的重要性会更高,解决数据相关的问题也会更重要。

或许有一天,咱们普通人也能更清楚地知道“自己的 data用在了哪儿”,也能更放心地让ai用咱们的数据,同时ai也能因为有足够多、足够好的数据,变得更聪明、更有用,帮咱们解决更多难题——比如帮农民更快地识别病虫害,减少损失;帮医生更准确地诊断疾病,拯救生命。

所以说,理解数据对ai的重要性,不仅能让咱们更懂ai,还能让咱们看到未来科技发展的方向。毕竟,ai的进步,离不开每一份数据的支撑,也离不开对数据的合理、合规使用。